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Non-linear least-squares regression is commonly used for pharmacokinetic parameter 
estimation. Initial parameter estimates are required as a prelude to non-linear least-squares 
and the quality of the final parameter estimates may depend on these initial values. 
Polyexponential curve stripping is frequently used for the provision of initial estimates. It is 
demonstrated that under certain conditions conventional curve stripping yields biased 
estimates. A new iterative curve stripping technique is developed and is shown to be free of 
such bias. The two methods are compared using both simulated and real pharmacokinetic 
data. 

An important element in the analysis and evaluation 
of the results of a pharmacokinetic study is the fitting 
of the model (or models) to the data by estimating 
the model parameters. This should be performed in 
such a way that the fitted model gives rise to a 
calculated curve which fits the observations ‘best’ in 
some sense. For this purpose the method of non- 
linear least-squares is generally used and a number of 
computer programs based on this approach are 
available (Pfeffer 1973; Metzler et a1 1974; Wagner 
1975; Pedersen 1977; Gomeni & Gomeni 1979; Peck 
& Barrett 1979; Messori et a1 1983). Non-linear 
least-squares involves a computerized search pro- 
cedure which attempts to locate the global minimum 
on the residual sum of squares (RSS) surface (Bard 
1974). The user is required to define a starting point 
for the search procedure by providing initial esti- 
mates of the parameters. These initial parameter 
estimates are critical if local minima are to be 
avoided. If the initial parameter estimates are not 
good the least-squares procedure will not converge 
on the best values. According to Boxenbaum et a1 
(1914) ‘the final parameter estimates will converge to 
the true estimates if and only if the initial estimates 
were sufficiently close to the true parameter values’. 
The influence of the initial parameter estimates has 
been studied by computer simulation techniques 
(Cobelli & Salvan 1977a,b). 

Polyexponential models are frequently used as 
empirical (Yeh & Kwan 1978) and as mechanistic 
(Godfrey 1983) models in pharamacokinetics. A 
number of graphical/numerical techniques have been 
described (Cornell 1962; Parsons 1968, 1970; Foss 
1970; Gomeni & Gomeni 1979; Koup 1981; Smith & 
Nichols 1983) for the provision of initial parameter 
estimates for these models. Probably the most 

popular is the curve stripping technique (Wagner 
1975) which is the basis of a number of computer 
programs (Sedman & Wagner 1976; Brown & 
Manno 1978; Leferink & Maes 1979; Niazi 1979; le 
Blanc & Dumas 1983). The curve stripping tech- 
nique is based on the assumption that the exponen- 
tial terms may be ‘isolatedo one at a time and their 
parameters estimated. This is a reasonable assump- 
tion if the relative magnitudes of the exponents are 
disparate. However, violation of this assumption 
would be expected to yield biased parameter esti- 
mates (Pedersen 1977; Peck & Barrett 1979; Dunne 
& Wilson 1983). A new iterative approach to curve 
stripping which makes no such assumption is des- 
cribed in the present paper and compared with the 
conventional approach as implemented by the com- 
puter program CSTRIP (Sedman & Wagner 1976). 

THEORY 

Assume that the pharmacokinetic behaviour of a 
particular drug may be described by 

m 

Y = j = 1  Z Cjexp(-ajt) (1) 

where Y is the measured response variable (e.g. 
plasma drug/metabolite concentration) at time t 
following drug administration, m is the number of 
exponential terms and C, and a, are the coefficients 
and exponents. 

Following administration of the drug, Y is 
measured on n occasions yielding the data set y,,t, i = 
1, . . . n and before non-linear least-squares curve 
fitting, initial estimates of the parameters Cj and aj 
must be found. Conventional curve stripping 
approaches this problem as follows: let the 
exponents be arranged in order such that 



98 A. DUNNE 

al > a2 > a3 > . . . > a, 
and assume that for t large enough (t > Tl), the first 
m - 1 exponential terms have decayed i.e. 

( 2 )  

m - 1  
Z Cjexp(-a,t) = 0 t > T1 (3) 

, = 1  

then 
Y = C,exp(-a,t) t > T1 (4) 

hence 
InY = In C, - a,t t > T1 (5) 

and a semilogarithmic plot of the terminal observa- 
tions (yi,ti) should be linear with intercept In C, and 
slope -a,. Consequently linear least-squares regres- 
sion may be used to produce estimates C, and 5,. 
The first set of residuals (Rl,i) are then calculated by 
subtracting the estimated values of the last exponen- 
tial term at the earlier time points from the observed 
values as follows 

Rl,j = yi - ern exp (-&ti) ti < T1 (6) 
These residuals correspond to the reduced model 
consisting of the first m - 1 exponential terms i.e. 

m - 1  
R1 = , Z  Cjexp(-ajt) 

1 - 1  (7) 

Assuming that for t large enough (t > T2) the first 
m - 2 exponential terms have decayed i.e. 

m - 2  

j = 1  
Cjexp(-a,t) = 0 t > TZ (8) 

then 
R1 = C, - ,exp(-a, - It) t > T2 (9) 

hence 
InR1 = lnC,-l - a,-lt t > T2 (10) 

and a semilogarithmic plot of the terminal residuals 
may be used to produce estimates C, - and i, - 1. 

Continuing in this manner, further sets of residuals 
are computed until all the parameters have been 
estimated. The above procedure is based on the 
assumption that for t large enough (t > Tk) the first 
m - k exponential terms have decayed i.e. 

m - k  

j = 1  
C Cj exp (-ajt) = 0 t > Tk (11) 

and consequently that the exponential terms may be 
‘isolated’ one at a time and their parameters esti- 
mated. This assumption is approximately satisfied if 

al >> a2 >> a3 . . . >> a,,, 
i.e. if the relative magnitudes of the exponents are 
disparate. 

It would be unnecessary to assume that the fast 
exponentials had decayed completely (equation (11) 

(14 

above) if they could be evaluated and subtracted 
from the data to produce ‘corrected’ data i.e. 

m - k  

R*k - 1.1 = Rk 1,i - ] = 1  Z C,exp(-a,t,) (13) 
or m - 1  

y*l = YI - J = 1  ’ CJexp(-aJtl) (14) 

as appropriate. 
Unfortunately, the second term on the right hand 

sides of equations (13) and (14) cannot be evaluated 
since the unknown parameters C, and a, are in- 
volved. If initial estimates of the parameters are used 
in equations (13) and (14) and the ‘corrected’ data 
curve stripped, it may be better than assuming that 
these terms are zero. Hence the technique may be 
applied in an iterative fashion as follows: 
(a) obtain parameter estimates making assumption 
(11) above, 
(b) ‘correct’ the data as in equations (13) and (14) 
using these estimates in place of the parameters, 
(c) obtain a new set of parameter estimates by curve 
stripping the ‘corrected’ data, 
(d) repeat steps (b) and (c) until the parameter 
estimates fail to improve by a specified amount. 
Because this procedure makes allowance for the 
overlap of the exponential terms, no assumption 
regarding the relative magnitudes of the exponents is 
necessary. 
A computer program called JANA has been de- 
veloped for the implementation of this iterative 
curve stripping procedure (Dunne 1985). 

M E T H O D S  

Simulated experiments were performed by generat- 
ing data using the appropriate model and adding 
pseudorandom normal errors. The GGNQF normal 
random deviate generator (IMSL 1980) was used to 
produce the errors. In the case of ‘noise free’ data, 
the model predicted values (rounded to three places 
of decimal) were used without any added error. 

CSTRIP and the non-linear least-squares program 
NONLIN (Metzler et a1 1974) were run on a DEC-20 
mainframe computer. JANA was run on an Apple 
IIe microcomputer. Curve fitting by NONLIN used 
the true parameter values as initial estimates. 

Since non-linear least-squares can be considered 
the optimal estimation procedure, the superiority of 
JANA over CSTRIP was quantified for each data set 
by calculating 
S% = 100. (RSS(C) - RSS(J))/(RSS(C) - RSS(N)) 

(15) 
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where RSS(C), RSS(J) and RSS(N) refer to the 
residual sums of squares following curve fitting with 
CSTRIP, JANA and NONLIN, respectively. 

RESULTS 
Noise free data were generated using a biexponential 
model corresponding to intravenous drug adminis- 
tration i.e. 

y = C1exp(-alt) + C2exp(-a2t) (16) 
with C1 = C2 = 50, al  = 0.10 and a2 = 0.02. There 
were fifteen data points at t = 0, 1 ,2 ,  3 , 4 , 5 , 7 ,  10, 
15, 20, 30, 50, 75, 100 and 150 units. The data were 
analysed by CSTRIP and JANA and the results are 
summarized in Table 1 (Experiment 1). This experi- 
ment was repeated three times with the ratio of the 
exponents (a1/a2) decreasing towards unity. These 
results are also tabulated in Table 1. A biexponential 
model corresponding to extravascular drug adminis- 
tration without a lag time was used to generate noise 

Table 1. Results of curve stripping of computer simulated 
data. The noise free data were generated from a biexpo- 
nential (intravenous drug administration) model with the 
parameter values labelled ‘true’. CSTR and JANA are the 
parameter estimates produced by CSTRIP and JANA, 
respectively. RSS refers to the residual sum ot squares. 

Experi- Parameter 
ment CI al C2 a2 RSS 
1 True 504Xl 0.10 50.00 0.02 

CSTR 49.68 0.105 51.00 0.020 0,942 
JANA 50.00 0.100 50.00 0.020 1.12E-6 

2 True 50.00 0.06 5003 0.02 
CSTR 42.43 0.072 58.40 0.021 2.292 
JANA 50.01 0.060 49.99 0.020 1.30E-6 

3 True 50.00 0.04 50.00 0.02 
CSTR 25.04 0.059 75.48 0.023 1,525 
JANA 49.96 0.040 50.04 0.020 1.30E-6 

4 True 50.00 0.03 50.00 0.02 
CSTR 8.10 0.060 92.22 0.023 0.472 
JANA 49.96 0.030 5044 0.020 1.59E-6 

Table 2. Results of curve stripping of computer simulated 
data. The noise free data were generated from a biexponen- 
tial (extravascular drug administration) model with the 
parameter values labelled ‘true’. CSTR and JANA are the 
parameter estimates produced by CSTRIP and JANA, 
respectively. RSS reters to the residual sum of squares. 

Exper- Parameter 
iment CI C2 a2 RSS 
1 True -50.00 0.10 5003 0.02 

CSTR -49.80 0.102 49.80 0,020 0.47 
JANA -50.00 0,100 50.00 0.020 1.45E-6 

CSTR -47.20 0.087 47.20 0,020 1.55 
JANA -50.00 0.080 50.00 0,020 0.66E-6 

CSTR -41.70 0,072 41.67 0.019 1.75 
JANA -50.01 0.060 50.00 0.020 1.26E-6 

CSTR -27.59 0,058 27.57 0.016 2.04 
JANA -50.01 0.040 50.01 0.020 1.30E-6 

2 True -50.00 0.08 50.00 0.02 

3 True -50.00 0.06 50.00 0.02 

4 True -50.00 0.04 50.00 0.02 

There were ten data sets at each noise level and the 
mean value for S% at each noise level is reported in 
Table 3. In some cases neither CSTRIP nor JANA 
were able to strip two exponential terms from the 
data and the mean S% was consequently based on 
fewer than ten values as indicated in Table 3. The 
mean number of iterations performed by JANA is 
also indicated in Table 3. 

Table 3. Mean improvement (So/, , see text) using JANA for 
curve stripping, compared with CSTRIP at 7 levels of 
homoscedastic error. Also shown are the mean number of 
iterations (IT) performed by JANA. The number of data 
sets contributing to each mean is indicated in parentheses. 

Standard deviation Mean S% Mean IT 
0.1 110) 93.66 296.7 .- .. 

87.65 157.3 
72.53 117.9 
78.48 147.4 
75.48 34.9 

5.0 6) 66.49 4.7 
10.0 [lo) 49.92 7.1 

free data at the same fifteen sample times as 
described above. The two coefficients were -50 and 
+50 and the ratio of the exponents was varied from 5 
to 2. The parameters were estimated for each data 
set using CSTRIP and JANA and the results are 
summarized in Table 2. 

CSTRIP and JANA were compared using simu- 
lated data to which homoscedastic pseudorandom 
normal errors had been added. The biexponential 
model described by equation (16) with C1 = C2 = 50, 
al = 0.03 and a2 = 0.02 was used to generate data at 
twenty sample times viz, t = 0,2,4,7,10,13,16,20, 
24, 28, 32, 38, 44, 50, 60, 70, 80. 100, 125 and 150 
units. Data sets with increasing error levels were 
generated and analysed with CSTRIP and JANA. 

Several pharmacokinetic data sets relating to both 
intravenous and extravascular drug administration 
were selected from the literature. The particular data 
sets were chosen because they had previously been 
used to validate parameter estimation procedures or 
to compare two or more such procedures. 

Data from four human subjects following bolus 
intravenous pancuronium administration were used 
(Pedersen 1977, 1978) to compare the non-linear 
least-squares programs NONLIN and FUNFIT. The 
same data were also used by others (Muir & 
Riegelman 1979; Wijnand & Timmer 1979) for 
comparison of parameter estimation programs. 
These data would appear to be best described by the 
sum of two exponential terms. The data were 
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analysed by CSTRIP and JANA. For two of the 
subjects (J.C. & I.A.) JANA was unable to improve 
on the fit by CSTRIP and gave identical results. The 
results for the other two subjects (M.C. & B.A.) are 
shown in Table 4. 

Table 4. Parameter estimates for biexponential model of 
bolus intravenous pancuronium data following analysis 
with CSTRIP (CSTR) and JANA. RSS refers to the 
residual sum of squares and IT to the number of iterations 
performed by JANA. 

Subject Parameter 
Ci al C2 a2 RSS IT 

M.C. CSTR 0.849 0.038 0.303 0.003 0.013 - 
JANA 0.936 0,034 0,218 0.002 0.009 3 

B.A. CSTR 0.503 0.032 0.204 0,0024 0.008 - 
JANA 0.588 0.025 0.108 0.0003 0,005 2 

Oral tetracycline data were used by Sedman & 
Wagner (1976) and by Brown & Manno (1978) to test 
the curve stripping programs CSTRIP and ESTRIP, 
respectively. These data were analysed by CSTRIP 
and JANA using both biexponential and triexponen- 
tial models. The results are shown in Table 5. 

level in the data increases. This would not’ be 
unexpected since the increasing noise would reduce 
the effectiveness of making a correction for over- 
lapping exponential terms. This would also explain 
why the mean number of iterations performed by 
JANA fell as the error level was increased. It is clear 
from Table 3 that when there is substantial over- 
lapping of exponential terms the advantage gained 
by using JANA instead of CSTRIP is significant even 
with noisy data. 

JANA was unable to improve on CSTRIP’s 
parameter estimates for two of the four pancuronium 
subjects. This may have been due to the fact that the 
error in the data was greater for these two subjects 
(Pedersen 1977) and swamped the effect of the 
overlapping term. Another possible explanation is 
that little or no ‘correction’ for an overlapping 
exponential term was required for these subjects. 
However, this latter explanation must be discounted 
since one of these subjects (J.C.) had the lowest 
exponent ratio of the entire group (Pedersen 1977). 
In the other two cases JANA improved the fit by 
30.8% (M.C.) and 37.5% (B.A.) relative to 

Table 5. Parameter estimates for biexponential and triexponential models of oral tetracycline data following analysis with 
CSTRIP (CSTR) and JANA. L refers to the lag time estimate, RSS to the residual sum of squares and IT to the number of 
iterations performed by JANA. 

Oral tetracycline 
Model Parameter 

c, a1 cz a2 c3 a3 L RSS IT 
Biexp CSTR -2.135 1.034 2.134 0.129 - - 0.61 0.027 - 

JANA -2.277 0.899 2.275 0.133 - - 0.54 0.017 21 
Triexp CSTR -2.820 0.897 0.970 0.463 1,850 0.117 0.59 0’027 - 

JANA -15.426 0.473 14.418 0.400 1.000 0.079 0.40 0.006 SO 

D I S C U S S I O N  

Tables 1 and 2 show that as the ratio of the exponents 
(a1/a2) decreased, the CSTRIP parameter estimates 
became more biased as expected. It is clear also that 
the iterative curve stripping implemented by JANA 
was not subject to this bias. 

There is some evidence in Table 3 that as the level 
of homoscedastic error was increased successful 
curve stripping became less likely. However, all ten 
data sets at the highest error level were successfully 
stripped. Consequently this effect requires further 
simulation studies for confirmation. Table 3 shows 
that on average JANA gave parameter estimates 
which were a significant improvement in terms of fit 
(as measured by the RSS) on the estimates produced 
by CSTRIP. It would appear that the benefit of using 
JANA rather than CSTRIP diminishes as the noise 

CSTRIP. JANA improved the fit of biexponential 
and triexponential models to the oral tetracycline 
data relative to CSTRIP by 37.0% and 77.8%, 
respectively. 

In conclusion, it is clear that at worst JANA 
cannot improve upon CSTRIP’s parameter estimates 
and at best may provide parameter estimates which 
are as good as those arrived at by non-linear 
least-squares regression. In general it should provide 
better initial estimates than CSTRIP and thus 
increase the likelihood of a successful non-linear 
least-squares fit, with fewer iterations being 
required. 
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